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Phospholipid vesicles are self-assembled bilayer structures
surrounding an aqueous inner cavity. This cavity can take up drug
molecules and such liposomes represent a well-advanced field of
nanomedicine with several formulations translated into the clin-
ics.[1] The field, however, seems stuck and particularly in tumor
targeting no significant advances have been made in the past de-
cade.[2] This is a clear sign that we do not understand the tools
we are using and it is therefore vital to take a step back and study
the fundamental biophysical properties of phospholipid vesicles.
We decided to do this by probing the forces at play in liposome
self-assembly using artificial phospholipids.

A typical drug delivery vesicle is in a liquid crystalline phase
which leads to a spherical shape.[3] Compared to this, a vesicle in
a gel phase possesses a much stiffer membrane and because of
strain energy minimization, the membrane moves out-of-plane
and forms facets, akin to the icosahedra of some viruses. Playing
with the attractive and repulsive forces in a membrane, we can
actively change the shape of a vesicle, leading to vesicle origami.

In the past years, we investigated different approaches to
alter membrane properties, combining organic synthesis with
monolayer and bilayer studies. A first motive leading to faceted
vesicles are 1,3-diamido phospholipids (Fig. 1: 1–3). Compared
to natural sn-1,2 phospholipids, the acyl chains are spaced further
apart, which leads to bilayer membrane leaflet interdigitation.[4,5]
Cryogenic transmission electron tomograms reveal non-spher-
ical vesicles of a developable form with overall zero Gaussian
curvature (Fig. 2: A,C). The defect line at the intersection of the
membrane faces renders the vesicle mechanoresponsive leading to
a new concept in nanomedicine: targeting of atherosclerotic blood
vessels through a physically triggered release mechanism.[6]

Fig. 1. Molecular structures of the class of 1,3-diamido phospholipids
(1, 2 and 3) and the 1,2-diamido phospholipid Pad-Pad-PC (4).

A second way to induce extreme vesicle faceting is to in-
crease the attractive intermolecular forces with large hydrogen
bond networks. Here, an optimized geometry is achieved with
1,2-diamido phospholipids (Fig. 1: 4), forming stiff membranes
in a subgel herringbone packing that cannot be bent in any direc-
tion. Forcing 4 to self-assemble into a closed 3D structure leads
to a minimization of membrane intersections (edges) and a maxi-
mization of flat membrane faces, resolved in a cuboid structure
(Fig. 2: B,D).[7]

Our approach to synthesize artificial phospholipids gives us
the flexibility to optimize our existing drug delivery system for
pharmaceutical applications. Combining the fundamental knowl-
edge onmembrane self-assembly from our diamido phospholipid
studies[4] and research on the phospholipid substitution patterns[7]
prompted us to synthesize the odd-numbered 1,3-diamido phos-
pholipid Rad-PC-Rad (2).[5] Compared to Pad-PC-Pad (1) (T

m
=

37 °C),[6] Rad-PC-Rad (2) shows an elevated main phase transi-
tion temperature of 45 °C and a processability that is lacking in
Sad-PC-Sad (3).[5] These properties make Rad-PC-Rad (2) suit-
able for shear stress-triggered release of drug molecules in ste-
nosed arteries, as a first-line treatment of myocardial infarction.
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Fig. 2. A) Cryogenic
transmission electron
tomogram of faceted
vesicles formulated with
Pad-PC-Pad (1). B) Cryo
transmission electron
tomogram of Pad-
Pad-PC (4) containing
vesicles. C) and D)
cryogenic transmission
electron micrographs
of Pad-PC-Pad (1) (C)
and Pad-Pad-PC (4)
containing vesicles.
Scale bars are 50 nm
wide.


