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Discovering a newdrug goes as follows: given amedical need,
identify the underlying biological mechanism, and design a mol-
ecule acting via this mechanism to produce the desired effects.[1]
This sounds simple, but in truth it’s not easy at all. Leaving aside
biology, an important part of the problem is the chemistry: there
are just too many molecules to choose from, perhaps as many as
1060 for all drug-like small molecules. Even with the help of com-
puters one cannot enumerate more than a few billions of them, let
alone predict their possible biological activity or how to synthe-
size them.[2] Of course, we don’t really need to look at all these
molecules. We can rely on trained medicinal chemists to make
educated guesses onwhich ones tomake and test first, often aided
bymodeling and automated searches, and this works well enough
that trial-and-error cycles eventually succeed.[3]

Here comes a disruptive idea: can we automate the process
and take the chemist out of the equation? Recent papers suggest
that this might become possible using deep learning. Deep learn-
ing is an umbrella term for machine learning methods based on
artificial neural networks,[4] by which a software first learns from
training data, and then is able to perform complex tasks or predic-
tions.[5] Parallelization of computer calculations, graphic cards
and software frameworks such as TensorFlow[6] have made deep
learning practical for writing music,[7] translating languages,[8]
and even playing (and winning) Go.[9]

Let’s first look at drug design, as published by Segler et al.,[10]
Gupta et al.,[11] Ertl et al.,[12] and Popova et al.[13]All four stud-
ies rely on generative recurrent neural networks (RNN) of the
type used for translating languages[8] and writing music[7] to learn
to write chemical structures in the form of SMILES (Simplified
molecular input line entry system), which is an unambiguous
compact line notation for molecules which efficiently replaces
nomenclature (Fig. 1a).[14] The RNN is first trained on SMILES
from bioactive molecules taken from the database ChEMBL,[15]
and surprisingly learns to write valid SMILES for ChEMBL-like
molecules. In a second step, the RNN is fine-tuned with SMILES
of molecules of a particular bioactivity class as input, which lead
it to produce more SMILES of molecules for this specific class.
Some of these generated molecules can be predicted to be as
active as the molecules used for training the RNN, but have sub-
stantial structural differences to them, making them in principle
novel, for example for the case of trypsin inhibitors (Fig. 1b).[11]

We now need a chemical synthesis for each of the molecules
produced by the RNN to test if any of them are in fact active.[16]

Segler et al. also propose an automated solution for that
problem based on deep learning.[17] They applied the coupling
of Monte-Carlo Tree Search (MCTS) with neural networks in-

troduced by Silver et al. for AlphaGo,[9] a computer program ca-
pable of beating masters in the game of Go.While the neural net-
works of AlphaGo were trained on Go games played by humans,
Segler et al. trained their neural networks on reactions extracted
from the Reaxys database.[18] The MCTS was then supplemented
with these neural networks, speeding up the convergence and op-
timizing the outcome of the probabilisticMonte-Carlo algorithm.
Applying this approach to the search for retrosynthesis routes
has shown that a search algorithm enhanced by neural networks
trained on human-produced data can surpass previous imple-
mentations such as expert systems which follow a strict set of
rules organized in a decision tree both in speed and predictive
quality.[19] The synthetic schemes proposed by the MCTS were
judged quite convincing by synthetic chemists and sometimes
identical to actual synthetic routes (Fig. 1c).[20]

As Segler et al. suggest,[17] automated retrosynthesis can be
coupled to automated drug design and result in a fully automated
drug design cycle. The machine is fed with a trained RNN and a
target, automatically designs new possible bioactive compounds,
checks for the ones that can be synthesized easily, attempts these
syntheses,[21] and tests them in an automated bioassay. If any of
the steps fails, the machine is patient and tries again and again,
until some of the predicted molecules are successfully obtained
and found to be active. The structure–activity data obtained from
the synthesized molecules, both active and inactive compounds,
can then be fed back to the RNN to guide further design cycles
for optimization.

Can this approach work? Would it be faster and more eco-
nomical than a project team? Would this be creative and solve
problems? The authors of the publications discussed above are
very much aware of the limitations of deep learning, which is
extremely good at performing automated tasks within a defined
range, but not necessarily more. Molecules created using deep
learning might only look like real drugs, as much as music com-
posed by deep learning sounds like the real thing but is not.[22]
Sincewe don’t know the answer, the confrontation ofman against
machine will be fascinating to follow, and the verdict will be se-
vere: either the machine succeeds, perhaps because drug design
does not need human genius like music does, and chemists will
have to rethink how to work. Or the machine fails, sending com-
puter scientists back to the drawing board.
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Fig. 1. a) Color-coded structural formula of thiamin, the corresponding SMILES notation (numbers in SMILES mark ring closures), and the systematic
name. b) A generative recurrent neural network (RNN) is first trained with SMILES from the database ChEMBL, thus learning to write valid SMILES
of ChEMBL-like molecules. The RNN is fine-tuned in a second step with bioactive compounds for a specific class (here trypsin inhibitors), and then
produces valid SMILES representing potential new bioactive compounds of this class. Example molecules taken from ref. [11]. c) A Monte-Carlo
Tree Search (MCTS) algorithm is enhanced by neural networks trained on reaction data from Reaxys. The algorithm can then propose retrosyn-
thetic schemes for any molecule. The example retrosynthesis of a drug intermediate produced by the MCTS is identical to a documented synthetic
route,[20] as discussed in ref. [17].
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